How might wind influence SWOT water surface retrievals?

Jessica V. Fayne^{1,2}, Laurence C. Smith³, and many collaborators ¹University of California – Los Angeles ²University of Southern California ³Brown University

jfayne@ucla.edu jfayne@usc.edu

Lightning Talks

SWOT Introduction

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Background: The Surface Water and Ocean Topography (SWOT) Mission

For inland hydrology, SWOT will observe water surface elevation and water surface extent at a very high resolution (~10–70 m), additionally enabling long-term monitoring of floodplain changes.

SWOT Introduction

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Background: SWOT and AirSWOT

The SWOT satellite mission and its airborne complement, AirSWOT, use a high frequency <u>Ka-band radar</u> (35.7 GHz, 8.4 mm) and radar interferometric techniques to measure the elevation of surface water.

AirSWOT, flown throughout the US and Canada, can be used to help understand what SWOT observations might look like.

~1 km (~0.6 mi) ~ 4 km (~2.5 mi)

Background: AirSWOT ABoVE Flights 2017

In July and August 2017, Airborne-SWOT (AirSWOT) acquired data from over 130 flight lines averaging 45 km in length from Saskatoon, Canada to Yukon Flats, Alaska mapping a total area of 22,400km².

Fayne et al 2020 ERL

SWOT Introduction

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Background: Ka-band SAR Missions

Because the Ka-band frequency has not historically been used for inland water mapping, scattering characteristics are not well understood for variations in surface cover.

Studying Ka-band scattering sensitivities and resultant InSAR elevations will not only support the primary objectives of the upcoming SWOT mission, but also support new Ka-band instruments and novel applications for SWOT data.

SWOT Introduction

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Ka-band scattering is a relatively unknown phenomenon

Ka-band has an 8mm wavelength, making it very (too) sensitive to surface features.

Longer wavelength radars such as C-, L-, and P- band have been more popular in recent decades.

Ka-band scattering is a relatively unknown phenomenon

Known:

Incidence-angle-dependent backscatter "drop-off" is expected for water.

Ka-band scattering is a relatively unknown phenomenon

Known:

Incidence-angle-dependent backscatter "drop-off" is expected for water.

Wind speed influences the magnitude of Ka-band backscatter, especially at oblique angles.

Fig. 4— σ° as a function of wind velocity, $\lambda = 8.6$ mm.

Many studies related to Ka-band wind speed and signal scattering come from the scatterometry community and are limited to oceanic studies or theoretical models.

Few have studied behavior over inland water bodies using observations; these studies use coarse resolution data (5–12km resolution points), limiting examinations to large water bodies >25 km².

Wind speed has the potential to increase or decrease returned signal magnitudes, reducing the ability to produce coherent images and accurate elevations from InSAR.

Distribution of AirSWOT Observations

50% of water features examined in this study are smaller than 15 km².

SWU

20% of water features are smaller than 1 km².

Available

Data

The AirSWOT observations are evenly distributed over all wind speeds. There is no bias in observations from any incidence angle.

Distribution of AirSWOT Observations

Available

Data

SWU

Research Questions

How do wind-driven waves in *small inland* water bodies influence Ka-band scattering?

Whereas previous studies were limited to studying water bodies greater than 25 km², 50% of the water bodies examined in this study are smaller than 15 km², and 20% of water bodies are smaller than 1 km².

٠

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Approach:

Examine the 2D scattering phenomenon of Ka-band data from AirSWOT for over 10,000 inland water bodies across Canada and Alaska.

• Produce moderate resolution wind speed data (5 km)

Compare wind speed with radar backscatter and coherence

SWOT 5 km Wind Speed

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Results: Produce Moderate Resolution Wind Speed

10 km gridded hourly wind speeds are interpolated to a 5 km grid using ECMWF ERA5 and in-situ stations

SWOT Wind Speed Incidence

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Results: Backscatter and Coherence Sensitivity to Wind Speed by incidence

SWOT Wind Speed Incidence

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Results: Backscatter and Coherence Sensitivity to Wind Speed by incidence

SWOT Wind Speed Water Area

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Results: Backscatter and Coherence Sensitivity to Wind Speed by area

SWOT Wind Speed Water Area

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Results: Backscatter and Coherence Sensitivity to Wind Speed by area

SWOT Wind Speed Water Area

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Results: Backscatter and Coherence Sensitivity to Wind Speed by area

Research Questions

How do wind-driven waves in *small inland* water bodies influence Ka-band scattering?

Research Answers

How do wind-driven waves in *small inland* water bodies influence Ka-band scattering?

Wind speeds 3 m/s and greater produce water surface roughness leading to high Ka-band backscattering and high coherence **(higher quality observations!)**.

Small water features (<1 km²) may have lower scattering (up to 5 dB), and lower coherence (up to 0.25), even under high wind conditions (lower quality observations!).

SWOT Summary

•

•

•

The Influence of Wind on Ka-band Radar Retrievals of Water Surfaces

Implications

- Low wind conditions and small water bodies should expect to produce lower backscatter and coherence values, leading to reduced measurement accuracy
 - Average global wind speeds are around 3 m/s ^(and increasing); *on average*, wind speeds should be high enough to produce accurate measurements
 - Future analyses examining inland water wind for small lakes can support local-scale hydro-climatological assessments for wind and evaporation modeling

How might wind influence SWOT water surface retrievals?

Jessica V. Fayne^{1,2}, Laurence C. Smith³, and many collaborators ¹University of California – Los Angeles ²University of Southern California ³Brown University

jfayne@ucla.edu jfayne@usc.edu

Lightning Talks